Increasing the Growth and Development of Chili-Pepper Under Three Different Shading Condition in Response to Biofertilizers Application
Abstract
Biological agents such as rhizosphere bacteria and Vesicular Arbuscular Mycorrhiza (VAM) are potential agents to improve soil qualities. In addition, species and varieties of crops give different response to the shading related to their growth and development. The research aimed to determine the effect of biofertilizer application under different levels of shading conditions on the growth and capsaicin content of Capsicum frutescens L. and evaluate the suitable levels of shading. The research was conducted from February to June 2019 at Universitas Brawijaya. Bhaskara variety was chosen in this research. Thirteen treatments and three replications were arranged in the randomized design with nest pattern (Nested). The treatments were a combination between the shading level and biofertilizers. The dry weight, nutrient content, fresh weight and capsaicin content were observed. The results showed the application of biofertilizers consisted of PGPR and VAM consortium, under the lowest shading condition (25%) increased the total dry weight of chili, the nutrients absorption, and the capsaicin content. The capsaicin content is influenced by the fruit weight of chili and plant nitrogen uptake. Biofertilizers and the lowest shading conditions contribute to supporting the growth and development of chili pepper.
Keywords
Full Text:
PDFReferences
Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2008). Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Canadian Journal of Microbiology, 54(10), 876–886. crossref
Alori, E. T., & Babalola, O. O. (2018). Microbial inoculants for improving crop quality and human health in Africa. Frontiers in Microbiology, 9, 2213. crossref
Bashan, Y., & De-Bashan, L. E. (2005). Bacteria: Plant growth-promoting. In Encyclopedia of Soils in The Environment Vol. 1 (pp. 103–115). Oxford, UK: Elsevier. Retrieved from pdf
Bona, E., Cantamessa, S., Massa, N., Manassero, P., Marsano, F., Copetta, A., … Berta, G. (2017). Arbuscular mycorrhizal fungi and plant growthpromoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza, 27, 1–11. crossref
Bona, E., Lingua, G., Manassero, P., Cantamessa, S., Marsano, F., Todeschini, V., … Berta, G. (2015). AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza, 25, 181–193. crossref
Castronuovo, D., Russo, D., Libonati, R., Faraone, I., Candido, V., Picuno, P., … Milella, L. (2019). Influence of shading treatment on yield, morphological traits and phenolic profile of sweet basil (Ocimum basilicum L.). Scientia Horticulturae, 254, 91–98. crossref
Cervantes-Hernández, F., Alcalá-González, P., Martínez, O., & Ordaz-Ortiz, J. J. (2019). Placenta, pericarp, and seeds of tabasco chili pepper fruits show a contrasting diversity of bioactive metabolites. Metabolites, 9(10), 206. crossref
Chialva, M., Fangel, J. U., Novero, M., Zouari, I., Di Fossalunga, A. S., Willats, W. G. T., … Balestrini, R. (2019). Understanding changes in tomato cell walls in roots and fruits: The contribution of arbuscular mycorrhizal colonization. International Journal of Molecular Sciences, 20(2), 415. crossref
Dal Cortivo, C., Barion, G., Ferrari, M., Visioli, G., Dramis, L., Panozzo, A., & Vamerali, T. (2018). Effects of field inoculation with VAM and bacteria consortia on root growth and nutrients uptake in common wheat. Sustainability, 10(9), 3286. crossref
Díaz-Pérez, J. C. (2013). Bell pepper (Capsicum annum L.) crop as affected by shade level: Microenvironment, plant growth, leaf gas exchange, and leaf mineral nutrient concentration. HortScience, 48(2), 175–182. crossref
El Saber Batiha, G., Alqahtani, A., Ojo, O. A., Shaheen, H. M., Wasef, L., Elzeiny, M., … Hetta, H. F. (2020). Biological properties, bioactive constituents, and pharmacokinetics of some Capsicum spp. and capsaicinoids. International Journal of Molecular Sciences, 21(15), 5179. crossref
Gaskins, M. H., Albrecht, S. L., & Hubbell, D. H. (1985). Rhizosphere bacteria and their use to increase plant productivity: A review. Agriculture, Ecosystems and Environment, 12(2), 99–116. crossref
Goh, T. B., Banerjee, M. R., Tu, S., & Burton, D. L. (1997). Vesicular arbuscular mycorrhizaemediated uptake and translocation of P and Zn by wheat in a calcareous soil. Canadian Journal of Plant Science, 77(3), 339–346. crossref
Graca, M. E. C., & Hamilton, D. F. (1981). Effects of nitrogen and phosphorus on root and shoot growth of Cotoneaster divaricata Rehd. & Wils. Scientia Horticulturae, 15(1), 77–85. crossref
Gul, A., Ozaktan, H., Yolageldi, L., Cakir, B., Sahin, M., & Akat, S. (2012). Effect of rhizobacteria on yield of hydroponically grown tomato plants. Acta Horticulturae, 952, 777–784. crossref
Hallasgo, A. M., Spangl, B., Steinkellner, S., & HageAhmed, K. (2020). The fungal endophyte Serendipita williamsii does not affect phosphorus status but carbon and nitrogen dynamics in arbuscular mycorrhizal tomato plants. Journal of Fungi, 6(4), 233. crossref
Hu, J., Li, M., Liu, H., Zhao, Q., & Lin, X. (2019). Intercropping with sweet corn (Zea mays L. var. rugosa Bonaf.) expands P acquisition channels of chili pepper (Capsicum annuum L.) via arbuscular mycorrhizal hyphal networks. Journal of Soils and Sediments, 19, 1632–1639. crossref
Idrees, S., Hanif, M. A., Ayub, M. A., Hanif, A., & Ansari, T. M. (2020). Chili Pepper. In M. A. Hanif, M. M. Khan, H. Nawaz, & H. J. Byrne (Eds.), Medicinal Plants of South Asia: Novel Sources for Drug Discovery (pp. 113–124). Elsevier. crossref
Jeeatid, N., Techawongstien, S., Suriharn, B., Bosland, P. W., & Techawongstien, S. (2017). Light intensity affects capsaicinoid accumulation in hot pepper (Capsicum chinense Jacq.) cultivars. Horticulture Environment and Biotechnology, 58, 103–110. crossref
Ju, J., Yamamoto, Y., Wang, Y., Shan, Y., Dong, G., Miyazaki, A., & Yoshida, T. (2009). Genotypic differences in dry matter accumulation, nitrogen use efficiency and harvest index in recombinant inbred lines of rice under hydroponic culture. Plant Production Science, 12(2), 208–216. crossref
Li, C., Hoffland, E., Kuyper, T. W., Yu, Y., Zhang, C., Li, H., … van der Werf, W. (2020). Syndromes of production in intercropping impact yield gains. Nature Plants, 6, 653–660. crossref
Maheshwari, D. K. (Ed.). (2011). Bacteria in agrobiology: Plant nutrient management. Berlin, Heidelberg: Springer. crossref
Mantelin, S., & Touraine, B. (2004). Plant growthpromoting bacteria and nitrate availability: Impacts on root development and nitrate uptake. Journal of Experimental Botany, 55(394), 27–34. crossref
Monforte-González, M., Guzmán-Antonio, A., UuhChim, F., & Vázquez-Flota, F. (2010). Capsaicin accumulation is related to nitrate content in placentas of habanero peppers (Capsicum chinense Jacq.). Journal of the Science of Food and Agriculture, 90(5), 764–768. crossref
Musfal. (2010). Potensi cendawan mikoriza arbuskula untuk meningkatkan hasil tanaman jagung. Jurnal Litbang Pertanian, 29(4), 154–158. Retrieved from website
Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429–448. crossref
Nzanza, B., Marais, D., & Soundy, P. (2012). Yield and nutrient content of tomato (Solanum lycopersicum L.) as influenced by Trichoderma harzianum and Glomus mosseae inoculation. Scientia Horticulturae, 144, 55–59. crossref
Qiu, L., Bi, Y., Jiang, B., Wang, Z., Zhang, Y., & Zhakypbek, Y. (2019). Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China. Journal of Arid Land, 11, 135–147. crossref
Razaq, M., Zhang, P., Shen, H. L., & Salahuddin. (2017). Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE, 12(2), e0171321. crossref
Rouphael, Y., Cardarelli, M., & Colla, G. (2015). Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Scientia Horticulturae, 188, 97–105. crossref
Rylski, I., & Spigelman, M. (1986). Effect of shading on plant development, yield and fruit quality of sweet pepper grown under conditions of high temperature and radlation. Scientia Horticulturae, 29(1–2), 31–35. crossref
Setiawan, A., Ito, S., Mitsuda, Y., Hirata, R., Yamagishi, K., & Umar, Y. P. (2021). Growth response of clove (Syzygium aromaticum L.) seedlings to different light and water regimes. AGRIVITA Journal of Agricultural Science, 43(1), IN PRESS. crossref
Song, R., Kelman, D., Johns, K. L., & Wright, A. D. (2012). Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chemistry, 133(3), 707–714. crossref
Thaib, N., Katja, D. G., & Aritonang, H. F. (2015). Isolasi capsaicin dari oleoresin cabai rawit (Capsicum frutescens L.). Chemistry Progress, 8(2), 71–76. Retrieved from website
Wada, S., Hayashida, Y., Izumi, M., Kurusu, T., Hanamata, S., Kanno, K., … Ishida, H. (2015). Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiology, 168(1), 60–73. crossref
Wu, Y. shan, Yang, F., Gong, W. zhuo, Ahmed, S., Fan, Y. fang, Wu, X. ling, … Yang, W. yu. (2017). Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems. Journal of Integrative Agriculture, 16(6), 1331–1340. crossref
Xu, C. long, Tao, H. bin, Wang, P., & Wang, Z. lin. (2016). Slight shading after anthesis increases photosynthetic productivity and grain yield of winter wheat (Triticum aestivum L.) due to the delaying of leaf senescence. Journal of Integrative Agriculture, 15(1), 63–75. crossref
Zhang, J., Lv, J., Xie, J., Gan, Y., Coulter, J. A., Yu, J., … Zhang, X. (2020). Nitrogen source affects the composition of metabolites in pepper (Capsicum annuum L.) and regulates the synthesis of capsaicinoids through the GOGAT-GS pathway. Foods, 9(2), 150. crossref
DOI: http://doi.org/10.17503/agrivita.v43i1.2833
Copyright (c) 2021 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.